Indian Institute of Technology Bombay

National Center for Photovoltaic Research and Education

Thin film devices Group

IAP Meeting, Jan 13th 2017

National Centre for Photovoltaic Research & Education IIT Bombay

Major Activities

- 1 cm² tandem cell based on perovskite top cell with Si and/or CZTSSe, with > 15% PCE
- Inorganic, organic, and C-based HTMs to replace Spiro-OMeTAD

- Chemical modifications to obtain better inherent stability and make Pb-free perovskite light absorbers
- New materials Oxides, phosphides, sulphides etc..

Perovskite thin film solar cells

Image Source: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

Tandem Solar Cells (PCE)

Back Metal Electrode	Back surfac e field	Si sub cell	Tunnel Junction	Electron Transport Layer	Perovskites	Hole Transpor t layer	Front Metal Electrodes	Tandem cell Efficiency reported
ITO Al	n+ a-Si	c-Si	p+ a-Si	(PEDOT:P SS)	CH3NH3PbI 3	PCBM	ITO	PCE 25%
AZO Ag	i a-Si n a-si	n c-Si	i a-Si p a-Si	SnO2	CH3NH3PbI 3	spiro- OMeTA D MoO3	ITO LiF3	PCE 19.9%
Ag	n a-si	n c-Si	n a-Si:H P a-Si:H	TiO2 Mesoporou s TiO2	CH3NH3PbI 3	spiro- OMeTA D	Ag nanowire LiF3	PCE 13.7%
Sputtering Thermal Evaporatio n	PECV D		PECVD	Spin Coating Atomic layer Deposition	Spin Coating	Spin Coating	Thermal Evaporatio n	

Perovskite-Si tandem cells

Alternate hole transport materials

Lead-free perovskites

Oxides, Phosphides, Sulphides ...

- Chalcopyrite p-type ZnSnP₂
 - Optical bandgap of 1.63 eV
 - Carrier concentration ~ 10¹⁶ cm⁻³
 - Absorption coefficient of ~ 10⁴ cm⁻¹
- Excellent candidate for tandem cells with Si and GaAs

• SQ limit ~28%

CZTS: nanoparticle Ink to Films

A simple and economical approach to synthesize size-controlled Cu₂ZhShS₄ (CZTS) nanoparticles : an absorber

- Engineering the matter with Anions/Cations: Control the formations of the secondary phases, the band gap, and the micro structure of Cu₂ZnSnS₄.
- Stoichiometric control over Cu, Zn and Sn concentrations.

CZTS co-electrodeposition

CZTS based thin film solar cell

- Back contact (Mo)
- Absorbing layer (CZTS)
- Buffer layer (CdS)
- Intrinsic ZnO layer/AZO layer
- Top contact (Ni/Al grid)

CdS buffer layer thickness :

- Shunting between the absorber and the electrode (too thin contact with buffer layer)
- high series resistance of the PV devices and the photon absorption (too thick contact)

Ref: I. Repins,," NREL/CP-520-46235 July 2009 M. Ali, Sol. Energy, **120** (2015) 131–146

Combinatorial dip coating of CdS buffer layer

Schematic illustrations of (a) combinatorial dip-coating process for creating thickness steps in the CdS contact layer, and (b) PV device structure with integrated combinatorially deposited CdS contact layer/buffer layer

Fabrication stages of the combinatorial PV device library, after the deposition of (a) CZTSe absorber, (b) CdS contact with thickness steps, and (c) TCO and metal electrode pads

Ref: Krishnaiah Mokurala etal . ACS. Comb. Sci. 2016, 18 (9) 583– 589

J-V measurements of thin film solar cells

Screen printed DSSCs

