Potential induced degradation and light induced degradation in c-Si solar cells

Anil Kottantharayil, Ph. D.

Professor

Department of Electrical Engineering

Outline

- IV measurement of solar cells
- Potential induced degradation (PID)
 - What is it?
 - Basic mechanism
 - Recovery
 - Mitigation strategies
 - PID test standard
- Light induced degradation (LID)
 - What is it?
 - Basic mechanism
 - Mitigation strategies

IV measurement of solar cells

STC: **AM1.5**

Temperature of 25°C Irradiance: 1000 W/m²

IV measurement of solar cells

Measured Temp: 25.3 °C Corrected Temp: 25.0 °C 99.9mW/cm² Irr Meas: Irr Corr: 100.0mW/cm² Voc: 44.398V Isc: 5.146A Pmax: 170.129W 36.411V Vpm: 4.673A lpm: FF: 0.745 Eff.c: 15.901% Eff.m: 13.350% 0.857 Ohm Rs: 177.865 Ohm Rsh: MCCC1: 0.968 MCCC2: 0.963 Intensity V: 5.835V Capacitor Voltage: 2240V Load V: 7.180V Sampling Frequency: 240000 Hz Sweep Delay: 10 ms 70 ms Sweep Length: Sweep Direction: Isc->Voc IV Points: 2757

Implications of on-field degradation

What is PID?

What is PID? (2)

Important components of a module:

- Front glass Solda lime glass
- Encapsulant Ethyl Vinyl Acetate (EVA)
- Solar cells
- Backsheet Tedlar
- Frame Aluminum

What is PID? (3)

What is PID? (4)

When modules are at the negative end of the string.

www.cenergymaxpower.com

Hacke et al., EU PVSEC 2010

What is PID? (5)

Hacke et al., NREL, 2014

8 - 6 -

PID is nonuniform across the module

Schuetze et al., IEEE PVSC 2011

0.2

0.4

voltage [V]

current [A]

0.0

What is PID?

Silicon nitride is seen to be etched from the cells due to PID. -600 V, 85C/85% RH, 1000 hrs.

Hacke et al., EU PVSEC 2010

PID and hot spot

Koch et al., EU PVSEC 2012

Impact of voltage

- PDDX different module technologies
- All voltages are negative on the cells

Koch et al., EU PVSEC 2011

Impact of temperature

Impact of humidity

Impact of dust

Hacke et al., IEEE PVSC 2011

PID - observations

- Large power loss is seen in modules when they are at the negative end of strings
- The major component of loss is the FF loss, due to creation of shunts in the solar cells.
- Electroluminescence (EL) is a powerful tool to diagnose PID. NCPRE proposed day-light EL could be deployed in field for this.
- Degradation is nonuniform across the module, and is seen to be more severe near the frame.
- Degradation is accelerated by voltage, temperature, humidity and dust.

PID mechanism

PID mechanism - role of sodium

Hacke et al., EU PVSEC 2010

PID mechanism – role of sodium

Lausch et al., IEEE Journal of Photovoltaics 2014

Explaining PID

- Under wet (snow, humid and dusty,) conditions, the glass is at ground potential leading to high electric field towards the cell.
- Na⁺ ions from the glass migrate to the cell through encapsulant and SiNx (ARC).
- Decoration of defect in silicon by Na⁺ leading to shunts and PID.
- The role of humidity (+dust) is to spread the ground contact on the glass surface. Closer to the frame, PID is more severe.
- The ion mobility in glass and encapsulant enhances with temperature. Activation energy of the PID is seen to be close to that of ion transport in glass in many cases.
- Localized poor contact between encapsulant and the ARC result in nonuniform PID even in lab tests.

PID recovery

Pingel et al., EU PVSEC 2010

PID Recovery

Anil Kottantharayil, NCPRE & Department of

Electrical Engineering

27/11/14

23

PID – Mitigation Strategies

- Due to large negative potential resulting in Na+ transport from the glass through the EVA and ARC to the cells
- Accelerated by temperature and humidity out of our control in field
- Would be smart not to count on recovery
- Mitigation:
 - Keep the modules clean (maintenance)
 - Operate strings with only positive and ground (system level)
 - Reduce sodium in glass or add barrier layers in glass (module)
 - Increase the sodium transport resistance of encapsulant (module)
 - Increase the sodium transport resistance of SiNx (cell level)
 - More robust emitter design and use of low defect silicon (cell level)

Modification of glass

- Na replaced with K at the surface of the glass
- Resistivity increases by 2 to 3 orders of magnitude

Kambe et al., IEEE PVSC 2013

Impact of encapsulant

Impact of SiNx ARC

Pingel et al., EU PVSEC 2010

What about positive polarity?

Positive polarity stress on cells

Swanson et al., EU PVSC 2005

PID in positively biased cells

PID in positively biased cells

Recovered by UV irradiation.

Positive stress

Negative stress

Hacke et al., 2010 EU PVSEC

PID - Test standard

- IEC 62804 is under preparation
- Draft test procedure
 - Chamber air temperature 60 °C ± 2°C
 - Chamber relative humidity 85 % ± 5 % RH
 - Test duration 96 h
 - Voltage: module nameplate rated system voltage (e.g.: 1000 V), 2 for each polarity, 1 module supplied for control, voltage applied during temperature ramps
 - Pass criterion: both modules of a tested polarity must show <
 5% power degradation and pass IEC 61215 ed. 2 visual inspection criteria

Outline

- Potential induced degradation (PID)
 - What is it?
 - Basic mechanism
 - Recovery
 - Mitigation strategies
 - PID test standard
- Light induced degradation (LID)
 - What is it?
 - Basic mechanism
 - Mitigation strategies

What is LID?

Performance of cells and modules is seen to degrade at a fast rate during the initial operation.

LID mechanism

- Formation of B_sO_{2i} due to illumination
- This defect introduces electronic states in the middle of the bandgap of silicon (E_C – 0.4)

Results in lower minority carrier lifetime

LID mechanism

No degradation in Ga doped p-type Si and n-type silicon.

Schmidt, Solid State Phonomena, vol. 95-96, pp. 187-196, 2004

LID mechanism

Silicon type	Average LID of cell batches			
	Mean	Median	Min	Max
Mono	2,1%	1,8%	0,3%	5,1%
Multi	1,5%	1,4%	0,6%	3,5%
Multi UMG	4,0%	4,0%	1,9%	6,7%

CZ mono wafers have higher concentration of oxygen than multi wafers.

Recovery of LID

Thermal annealing at 200 C or higher should recover the performance.

Recovery of LID (2)

LID – Mitigation Strategies

- Industry long term perspective
 - Move to n-type wafers
- Short term perspectives?
 - Quality checks
 - IEC 61215 specify light socking but no temperature

LID – Mitigation Strategies: Points to ponder

Temperature of light soaking should be specified.

LID – Mitigation Strategies: Points to ponder

LID – Mitigation Strategies: Points to ponder

Outline

- IV measurement of solar cells
- Potential induced degradation (PID)
 - What is it?
 - Basic mechanism
 - Recovery
 - Mitigation strategies
 - PID test standard
- Light induced degradation (LID)
 - What is it?
 - Basic mechanism
 - Mitigation strategies